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B I O L O G I C A L  O X I D A T I O N  A N D  R E D U C T I O N  O F  I N O R G A N I C  COMPOUNDS O F  SULFUR 

Harry D. Peck, Jr. 

Department o f  Biochemistry, University of Georgia, 
Athens, Georgia 30602 

The b io logica l  processes involved i n  t h e  oxida t ion  and reduction of inorganic 
compounds of s u l f u r  a r e  gene ra l ly  represented by t h e  idea l ized  "b io logica l  s u l f u r  
cycle" shown i n  Figure 1 (18). Sul fa t e  and su l f ide  a re  p i v o t a l  compounds i n  the  
scheme as they represent  bo th  the  most common forms of inorganic s u l f u r  found in  
nature and are the  most common forms of s u l f u r  incorporated i n t o  b io logica l  materi- 
als. A t  the  top of  the scheme, the  b iosynthe t ic  reac t ions  involving the  incorpora- 
t i o n  o f  s u l f a t e  a s  ester l inkages  i n t o  carbohydrates, l i p i d s ,  phenol, s t e ro ids ,  e t c .  
(14) a r e  indicated as s u l f a t i o n  reac t ions .  Su l f a t ion  reac t ions  a re  extensively 
involved i n  the b iosynthes is  of s t r u c t u r a l  components i n  p l a n t s  and animals but sul- 
f a t e  e s t e r s  have only r a r e l y  been reported t o  occur i n  bac te r i a .  A l l  th ree  groups 
of organisms do have s u l f a t a s e s  which s p e c i f i c a l l y  hydrolyze the various e s t e r s .  On 
t h e  r i g h t  hand por t ion  o f  t he  scheme, the e i g h t  e l ec t ron  reduction of SOi;' to  Sd2 
is represented and, a t  the  bottom of the scheme, t he  b iosynthes is  o f  amino acids and 
cofac tors  (or vitamins) from S-' is shown. On the l e f t  hand por t ion  of t h e  scheme, 
the oxidation of reduced s u l f u r  compounds i s  ind ica ted  (shown here  as  s u l f i d e  bu t  
o the r  c o m n  subs t r a t e s  include S2OSz and elemental  s u l f u r ) .  
of inorganic s u l f u r  m e t a b o l i s m  thus provide the  e s s e n t i a l  transformations f o r  the  
incorporation of s u l f u r  i n t o  b io log ica l  materials and a l i n k  between the appropri- 
a t e  geological and b i e f o g i c a l  phenomena. 

The b io log ica l  aspects 

The oxida t ive  and reduct ive  process have been f u r t h e r  c l a s s i f i e d  depending on 
the  organism and the  phys io logica l  s ign i f icance  of the  process i n  t h e i r  metabolism. 
Two physiological types of s u l f a t e  reduction a r e  recognized (21). 
ass imi la tory  or b iosyn the t i c  s u l f a t e  reduction i n  which organisms reduce only enough 
s u l f a t e  t o  meet t h e i r  n u t r i t i o n a l  requirements f o r  s u l f u r .  This pathway is  consid- 
ered t o  be  in the  pathway f o r  the b iosynthes is  of cys te ine  and is  usually under both 
coarse and f ine  metabolic regula t ion  ( 2 9 ) .  
and must depend upon p l a n t s  and bac te r i a  f o r  t h e i r  metabolites containing reduced 
su l fu r .  This pathway occurs i n  most p l an t s  and b a c t e r i a ,  including aerobes and 
anaerobes, and, because o f  i t s  wide occurrence, i s  probably the  l a r g e s t  b io logica l  
process f o r  t he  reduction of s u l f a t e ;  however, only i n d i r e c t l y  during the digestion 
and hydrolysis of b io log ica l  materials does t h i s  pathway produce s u l f i d e  i n  nature. 
The second sequence involved i n  the  reduction of s u l f a t e  i s  t h e  d iss imi la tory  o r  
r e sp i r a to ry  pathway o f  s u l f a t e  reduction i n  which s u l f a t e  i n  the  absence of oxygen 
serves  a s  a terminal e l e c t r o n  acceptor f o r  anaerobic r e sp i r a t ion  (13) .  This pathway 
o f  s u l f a t e  reduction occurs  only i n  the su l fa te - reducing  b a c t e r i a ,  species of w- 
fovibr io  (25) and Desulfotomaculum ( 4 ) ,  and r e s u l t s  i n  the  formation of very large 
amounts of S-2. 
formation and accumulation of most S-' i n  nature and is be l ieved  t o  be  involved i n  
many geochemical phenomena. The enzymes o f  t h e  r e sp i r a to ry  pathway a re  cons t i tu t ive ,  
i - e .  n o t  e f f ec t ed  by growth conditions,  and the  intermediates and enzymes responsible 
f o r  resp i ra tory  s u l f a t e  reduction a r e  q u i t e  d i f f e r e n t  from those involved i n  biosyn- 
t h e t i c  s u l f a t e  reduction. Members o f  the genus, Desulfovibrio a r e  the  most exten- 
s i v e l y  studied of the su l fa te - reducing  bac te r i a .  These bac te r i a  have only a l imited 
capab i l i t y  f o r  ox id iz ing  subs t r a t e s  (Hz. formate,  pyruvate,  l a c t a t e ,  ethanol,  
fumarate) and a r e  the  f irst  non-photosynthetic anaerobes i n  which C-type cytochrome 
were discovered ( 2 4 ) .  
(13) and oxida t ive  phosphorylation has been demonstrated t o  be  coupled t o  e lec t ron  
t r a n s f e r  (19). 

The f i r s t  i s  

Animals do no t  c l a s s i c a l l y  reduce su l f a t e  

Respiratory s u l f a t e  reduction is the  process responsible f o r  the 

They a l s o  produce many low molecular weight e l ec t ron  ca r r i e r s  
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Most plan ts ,  bac t e r i a  and animals a r e  capable o f  ox id iz ing  reduced inorganic  
and organic compounds of s u l f u r  t o  s u l f a t e .  
f o r  growth has never been repor ted  although it is extens ive ly  involved i n  e s s e n t i a l  
b iosynthe t ic  reac t ions  i n  p l an t s  and animals. Reduced s u l f u r  compounds can a l s o  be 
u t i l i z e d  by microorganisms as  e lec t ron  donors for both aerobic  and anaerobic grav th ,  
as wel l  as photosynthetic growth with t h e  formation of s u l f a t e .  
genus, Thiobacil lus,  ox id ize  S-', 5203' and So to SO:' i n  the  presence of oxygen and 
ga in  energy fo r  growth i n  t h e  form of adenosine tr iphosphate (ATP) by means of oxi- 
da t ive  phosphorylation ( 3 2 ) .  One spec ies ,  T. den i t r i f i cans  can u t i l i z e  e i t h e r  oxygen 
or n i t r a t e  w i t h  the  formation of N:! as terminal e l ec t ron  acceptor.  
bac t e r i a ,  members of the Chromatiaceae (purple s u l f u r  bac te r i a )  and Chlorobiaceae 
(green s u l f u r  bac te r i a )  can use reduced s u l f u r  compounds a s  e l ec t ron  donors f o r  
photosynthetic growth f i r s t  with the formation of So and subsequently SO:'. 
t he  b io logica l  s u l f u r  cyc le  genera l ly  involves a la rge  number o f  d ive r se  organisms, 
it is poss ib le  to cons t ruc t  a simple, l igh t -dr iven  s u l f u r  cyc le  by means of a sul-  
fate-reducing bacterium and a photosynthetic bacterium. This is no t  a primary pro- 
ducing system, as  water can not se rve  as a source of electrons, b u t  it provides a 
model system f o r  the study of the in t e rac t ions  requi red  f o r  the b io log ica l  s u l f u r  
cycle.  In  addition, this simple form of the cycle may represent  a p r imi t ive  system 
f o r  the conversion o f  s o l a r  energy i n t o  b io log ica l ly  useable energy. 

'rhus, a s p e c i f i c  requirement of s u l f a t e  

Members of t h e  

Photosynthe t ic  

Although 

I n  most s o i l s  and na tu ra l  environments, there is  a continuous f lux  of s u l f u r  
through the  b io logica l  s u l f u r  cycle without the accumulation of in te rmedia tes  or sig- 
n i f i c a n t  changes in  the  concentrations of s u l f a t e  and s u l f i d e .  This s i t u a t i o n  can 
then be  regarded as an uninterrupted o r  continuous s u l f u r  cycle.  Under c e r t a i n  con- 
d i t i ons ,  one o r  more s t eps  i n  t h i s  s u l f u r  cycle can become inh ib i t ed  w i t h  t h e  r e s u l t  
that the  concentrations of s u l f a t e  and s u l f i d e  are d r a s t i c a l l y  a l t e r e d ,  o f t en  with 
dramatic e f f e c t s  on a s p e c i f i c  environment. This can be considered to  be an i n t e r -  
rupted o r  discontinuous s u l f u r  cyc le  and its consequencq w i l l  be b r i e f l y  considered. 
Under anaerobic condi t ions ,  the  oxida t ion  of reduced s u l f u r  compounds is inh ib i t ed  
(except i n  the presence of NOT1) and, with SO:', organic e lec t ron  donors o r  H 2  and 
an environmental pH above 4 .5 ,  copious amounts of S-' can be produced by the  s u l f a t e  
reducing bac te r i a .  The consequences of this microbial reduction o f  s u l f a t e  to  an 
environment a re  complex bu t  can be l a rge ly  analyzed i n  terms of the chemical proper- 
ties o f  H2S. Sulf ide  i s  an i n h i b i t o r  of cytochrome oxidase which i s  e s s e n t i a l  f o r  
aerobic  r e sp i r a t ion ,  reacts w i t h  molecular oxygen and generates a reducing environ- 
ment because of i t s  low E, value of about -300 mV. Thus, i ts formation i n  any 
environment can r e s u l t  i n  t he  formation of anaerobic conditions and the inh ib i t i on  
of aerobic f lo ra .  Sul f ide  a l so  combines w i t h  heavy metals present  i n  an environment 
t o  form inso luble  s u l f i d e s  and t h e r e  is some evidence t o  ind ica t e  t h a t  most pyrite 
o res  are formed from b io log ica l ly  produced s u l f i d e .  
environments i s  due t o  t h i s  reac t ion  and the Black Sea is claimed t o  der ive  i ts  name 
from t h e  f a c t  t h a t  in areas  it appears t o  be black due t o  the  abundance of FeS. As 
ind ica ted  previously,  s u l f i d e  and elemental su l fu r  can serve  a s  subs t r a t e s  f o r  the  
growth of many microorganisms and on the periphery of an environment i n  which there  
is extensive s u l f a t e  reduction (termed a " s u l f u r e t m " )  one can o f t en  f ind  high con- 
cen t r a t ions  of Th iobac i l l i  and/or photosynthetic bac te r i a .  For example, i n  very 
shallow marine environments, it i s  common to observe red  and green photosynthetic 
bac te r i a  growing on the sur face  of sediments t h a t  a r e  producing S-'. 
is made possible i n  p a r t  because a t  physiological pH va lues ,  H2S is v o l a t i l e  and a 
sulfuretum can usua l ly  be de tec ted  by our o l f ac to ry  senses. The v o l a t i l i t y  o f  H'S 
formed by s u l f a t e  reduction can also r e s u l t  in an environment becoming extremely 
a lka l ine  and it has been pos tu la ted  t o  be the  cause of the formation of c e r t a i n  
depos i t s  of Na2CO3 by the absorption of COz from the  atmosphere. The concentration 
of s u l f a t e  can b e  decreased i n  na tu ra l  waters t o  the  poin t  t h a t  r e sp i r a to ry  s u l f a t e  
reduction ceases and in t e rac t ions  w i t h  methanogenic bac te r i a  become important a s  w i l l  
be  discussed l a t e r .  The sulfate-reducing bac te r i a  have high l eve l s  of t h e  enzyme 
hydrogenase concentrated around the periphery of t h e i r  c e l l s  (18) and the  enzyme 

The black co lo r  of anaerobic 

This phenomenon 
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appears t o  be important both i n  the  production and u t i l i z a t i o n  o f  molecular hydrogen 
which is commonly found i n  anaerobic environments. The a b i l i t y  t o  u t i l i z e  extremely 
low concentrations of H Z  has  been pos tu la ted  t o  be the  ro l e  o f  t he  organisms i n  the 
rap id  anaerobic corrosion of  i ron  (9 ) .  'The various environmental aspec ts  of respira- 
to ry  s u l f a t e  reduction a r e  summarized i n  Table 1 and m o s t  of these environmental 

TABLE 1: Environmental E f fec t s  of Respiratory Su l f a t e  Reduction 

1. Formation of Sul f ide  
2. Change o f  pH 
3. Removal of Heavy Metals 
4. Removal of Hydrogen 
5. Removal of Su l f a t e  
6. Changes i n  Microflora 
7. Frac t iona t ion  of Sul fur  Isotopes 

~~ ~~ ~ 

e f f e c t s  o f  r e sp i r a to ry  s u l f a t e  reduction can be  in t e rp re t ed  i n  terms of the  chemical, 
b io log ica l  and phys ica l  p rope r t i e s  of H2S. Postgate (23) has presented a more de ta i led  
and extensive d iscuss ion  of these  environmental e f f e c t s  of s u l f a t e  reduction. A 
r e l a t e d  aspect o f  these  b a c t e r i a  is t h e  f r ac t iona t ion  of s u l f u r  i so topes  occurring 
dur ing  the reduction of s u l f a t e  which allows determination as  t o  whether a given 
depos i t  o f  reduced s u l f u r  w a s  formed by geological phenomena o r  b io log ica l  agents ( 3 4 ) .  

Under aerobic condi t ions ,  the  absence of organic e l ec t ron  donors and/or ac id ic  
pH values (below 4.5) r e sp i r a to ry  s u l f a t e  reduction is inh ib i t ed  and a second type 
o f  imbalance i n  the  b i o l o g i c a l  s u l f u r  cycle c rea ted  which leads t o  the  formation of 
very a c i d i c  environments ( to pH 1.0) .  For t h i s  s i t u a t i o n  t o  occur,  t he  presence of 
reduced su l fu r  compounds, such as H*S, S o  or S Z O ; ~ ,  which can be oxidized by the 
Th iobac i l l i  to s u l f a t e  a s  H 2 S O 4 ,  is required.  In con t r a s t  t o  t h e  sulfate-reducing 
bac te r i a  which requi re  f ixed  carbon, these organisms can u t i l i z e  COz a s  t h e i r  so le  
source of carbon ( 3 5 ) .  This ac id i c  environment occurs pa r t i cu la r ly  where there  is 
poor drainage and its formation can i n h i b i t  the  growth of a wide va r i e ty  of s o i l  bac- 
t e r i a .  From an economic p o i n t  o f  view, these microorganisms can be important agents 
i n  the erosion of var ious  types o f  s tone  and this a spec t  is emphasized by one i s o l a t e  
of these bac te r i a  being named x. concretivorous (17). I n  genera l ,  t he  var ious  
physiological types  of microorganisms responsible f o r  t h e  oxidation and reduction of 
inorganic su l fur  compounds have been i s o l a t e d  i n  pure cu l tu re  and t h e i r  physiology 
s tud ied  s u f f i c i e n t l y  to p r e d i c t  and cont ro l  the accumulation o f  s u l f i d e  and s u l f a t e  
i n  a given environmental s i t u a t i o n .  

The biochemistry of the reac t ions  o f  inorganic s u l f u r  compounds has been only 
sporadica l ly  s tud ied  bu t  although not  a l l  o f  t h e  enzyme and reac t ions  have been com- 
p l e t e l y  charac te r ized ,  t h e  reac t ions  involved can a t  l e a s t  be reasonably w e l l  out- 
l ined .  Su l f a t e  i s  f i r s t  t ranspor ted  across the  membrane of t h e  c e l l  by means of an 
ac t ive  process involving su l fa te -b inding  pro te ins  (16) and once in s ide  the  c e l l  
un ive r sa l ly  r eac t s  with ATP t o  form adenylyl s u l f a t e  (APS) and inorganic pyrophos- 
phate ( P P i )  as  shown i n  T a b l e  2, reac t ion  1. The equilibrium of the  reac t ion  l i e s  
i n  the d i rec t ion  of  ATP and SO;' and, f o r  s i g n i f i c a n t  formation of APS, the  reaction 
must be  coupled to  e i t h e r  o r  both pyrophosphate hydrolysis,  Table 2 ,  r eac t ion  2 ,  or  
phosphorylation i n  the  3 ' -pos i t ion  to  form 3'-phosphoadenylyl s u l f a t e  (PAPS), Table 
2 ,  reac t ion  3. PAPS serves as t h e  subs t r a t e  f o r  a l l  su l f a t ion  reac t ions ,  Table 2 ,  
r eac t ion  4 ,  and forms a s u l f a t e  e s t e r  and 3',5'diphosphoadenosine (PAP), bu t  spe- 
c i f i c  enzymes, termed su l fo t r ans fe ra ses ,  a r e  required f o r  the various acceptors such 
a s  alcohols,  phenols, s t e r o i d s ,  e t c .  PAPS i s  a l so  be l ieved  t o  be t h e  form i n  which 
SO:' is reduced to  SO;' by t h e  reduced triphosphopyridine nucleotide (TPNH2) spec i f i c  
PAPS reductase Table 2 ,  r eac t ion  5; bu t ,  t he  r o l e  of t h i s  enzyme and t h a t  of the  
TPNHz: s u l f i t e  reductase,  Table 2,  reac t ion  6 ,  which ca ta lyzes  the  6 e l ec t ron  of 
SOT' to S-' i n  t he  b iosyn the t i c  pathway has recent ly  been questioned (30) .  However. 
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it remains clear that the b iosynthe t ic  pathway is  biochemically d i s t i n c t  f r o m  t h e  
r e sp i r a to ry  pathway. 

TABLE 2: The Enzymes of Biosynthetic Su l f a t e  Reduction 

1. ATP:sulfurylase 

ATP + SO;' Mg+2 b APS + PPi (28) 

2. Inorganic pyrophosphatase 

PPi + A20 .-!?e.+ 2Pi 

3. APS:kinase 

ATP + APS &PAPS f ADP 

4. Sulfo t ransferase  

Ron + PAPS + rnSO?I + PAP 

(28)  

(27) 

(14) 

5. PAPS reductase 

PAPS + TPm2 * so32 + PAP + TPN (37) 

6. S u l f i t e  reductase 

SO?2 + 3TPNH2 +. S-2 + 3TPN + 3HzO (31) 

The i n i t i a l  s t e p  i n  the re sp i r a to ry  pathway o f  s u l f a t e  reduction is t h e  same a s  
that i n  the b iosynthe t ic  pathway, t h a t  is, the formation of APS from ATP and Soh2 by 
ATP su l fu ry la se  and its formation is  coupled only to the  hydrolysis o f  inorganic 
pyrophosphate, Table 2 and 3, reac t ions  1 and 2. APS ra the r  than PAPS is the form 

TABLE 3: The Enzymes o f  Respiratory Su l f a t e  Reduction 

1. ATP:sulfurylase 

ATP + SO;' -+ APS + PPi 

2. Inorganic pyrophosphatase 

PPi + H 2 0  + 2Pi 

3. APS : reductase 

APS + 2e * AMP + 

(28) 

(28)  

(20) 

5. Tr i th iona te  reductase 

~ 3 0 ; ~  + 2e * ~ 2 0 5 ~  + 50;' (10) 

6. Thiosulfate reductase 

+ 2e +. s - ~  + ( 8 )  

i n  which SO;' is reduced to  SO;' with t h e  formation o f  AMP, Table 3, r eac t ion  3 ,  by 
APS reductase i n  a r eve r s ib l e  oxidation-reduction reac t ion .  S u l f i t e  (or b i s u l f i t e )  
is not  d i r e c t l y  reduced t o  S2 by a s ing le  enzyme a s  i n  t h e  b iosyn the t i c  pathway bu t  
rather three separa te  reductive s t eps  are involved. In a complex r eac t ion  involving 
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t h ree  molecules of s u l f i t e ,  SO?' is reduced t o  t r i t h i o n a t e  ( S 3 0 E 2 )  by a hemoprotein, 
b i s u l f i t e  reductase,  of which the re  a re  th ree  d i f f e r e n t  types,  desu l fovi r id in ,  
desulforubidin (12) and P582 (1). Table 3,  reac t ion  4 .  T r i th iona te  is next reduced 
t o  th iosu l f a t e  with the  concomitant formation of s u l f i t e  by t r i t h i o n a t e  reductase,  
Table 3, reac t ion  5 .  The t h i o s u l f a t e  is then reduct ive ly  cleaved t o  y i e l d  S-' and 
a second molecule o f  SO$, Table 3,  reac t ion  6. 
reductions have not been d e f i n i t i v e l y  e s t ab l i shed  bu t  they appear t o  be  low-molecular 
wei h t  e lec t ron  t r a n s f e r  pro te ins .  I n  both pathways, the r e s u l t  i s  i d e n t i c a l  i n  tha t  
,Or8 is  reduced to S-'; however, the re sp i r a to ry  pathway requi res  one less ATP and 
four  d i sc re t e  reduct ive  s t e p s  r a t h e r  than the  two involved i n  the  b iosynthe t ic  path- 
way. 
pathways. 

The e l ec t ron  donors f o r  these 

These d i f fe rences  probably r e f l e c t  t he  d i f f e r e n t  phys io logica l  r o l e s  of the 

The resp i ra tory  pathways involved i n  the oxidation of  reduced s u l f u r  compounds 
t o  Sot2 a re  l e s s  w e l l  def ined  than those i n  the  reduction of s u l f a t e .  
t i o n  is the oxidation of a cofac tor  o r  enzyme-bound polysul f ide  (15) to s u l f i t e  i n  
an oxygen requi r ing  oxida t ion ,  T a b l e  4 ,  reac t ion  1 ( 3 3 ) .  Elemental s u l f u r  and 

The key reac- 

TABLE 4: The Reactions o f  Respiratory Sul fur  Oxidation 

1. Polysul f ide  oxidase 

Hz0 + RsnSS- + 0 2  * RSnS-' + SO?' + 2H+ (33) 

I 

2.  Thiosul fa te  formation 

s o  + so32 + s2072 

2e + ~ 2 0 3 ~  + SOT' + ZS-' 

so32 + 1/2 0 2  * so? 

3. Thiosul fa te  reductase 

4 .  S u l f i t e  oxidase 

(33) 

( 2 2 )  ., 

( 6 )  

5. APS reductase  

AMP + SOT2 + 2 cy to  cox + APS + 2 cyto cred ( 2 2 )  

6. ADP su l fu ry la se  

APS + P .  + ADP + SOL2 ( 2 2 )  

s u l f i d e  can form this "bound polysul f ide"  (R)  and thus e n t e r  the  reac t ion  sequence: 
however, l i t t l e  i s  known about the  d e t a i l s  of these  in t e rac t ions .  S u l f i t e  i s  a highly 
r eac t ive  molecule and non-enzymatically combines wi th  elemental s u l f u r  t o  form thio- 
s u l f a t e ,  Table 4 ,  reac t ion  2 .  Thiosul fa te  i s  re turned  to the main resp i ra tory  path- 
way by reductive cleavage t o  s u l f i d e  and s u l f i t e  by th iosu l f a t e  reductase,  Table 4 ,  
reac t ion  3 .  The f i n a l  s t e p  is  the oxida t ion  of SOY2 t o  SO;;' and is accomplished by 
two enzymatic pathways. The f i r s t  i s  the simple oxida t ion  of 
enzyme, s u l f i t e  oxidase,  i n  c e r t a i n  of the Th iobac i l l i ,  Table 4 ,  reac t ion  4 .  This 
oxidase has been repor ted  t o  be absent  i n  t he  photosynthetic bac te r i a  ( 3 6 ) .  
second pathway, found i n  the hotosynthe t ic  bac te r i a  and some of t he  Thiobac i l l i ,  
involves the oxidation of  SO:' i n  t h e  presence of AMP t o  t h e  l eve l  of s u l f a t e  as  APS 
by APS reductase, Table 4 ,  reac t ion  5 .  The high energy s u l f a t e  can then be exchanged 
for a phosphate group t o  y i e l d  ADP by the enzyme, ADP:sulfurylase t o  produce bio- 
l og ica l ly  u t i l i z a b l e  energy, Table 4 ,  reac t ion  6.  Thus, microorganisms u t i l i z i n g  
the  APS pathway a r e  ab le  to obta in  energy by means of a subs t r a t e  phosphorylation i n  
addi t ion  t o  e i t h e r ' o x i d a t i v e  phosphorylation o r  photophosphorylation. 
s ide ra t ions  of the  b io log ica l  s u l f u r  cycle,  i t  must be borne i n  mind t h a t  the  
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oxidat ion Of reduced s u l f u r  compounds y i e l d s  energy and t h a t  the  reduct ion of su l -  
f a t e  requires  energy although the reduct ion of s u l f a t e  can be coupled w i t h  an oxi-  
da t ive  react ion which produces m o r e  energy than t h e  reduct ion o f  SO,' requi res  and 
thereby produce energy f o r  growth. 

An important aspec t  of the  b io logica l  s u l f u r  cycle  i s  the a b i l i t y  of c e r t a i n  of  
theae anaerobic microorganisms to l i n k  and thereby modify t h e i r  fermentat ive respira-  
tory pathways by means of  the i n t r a c e l l u l a r  t ranspor t  o r  t r a n s f e r  of  molecular hydro- 
gen. This l ink ing  of  fermentations allows these anaerobic b a c t e r i a  to grow under 
some unexpected and surpr i s ing  condi t ions i n  an almost symbiotic re la t ionship .  There 
a r e  now severa l  w e l l  documented examples o f  t h i s  b i o l o g i c a l  phenomenon. Methano- 
b a c i l l u s  Omelianskii has  been demonstrated t o  be a mixed c u l t u r e  growing i n  this 
type Of re la t ionship  and forming a c e t a t e  and CHs from Cop and e thanol  ( 3 ) .  One of 
the  Organisms, the S organism, oxidizes  e thanol  to a c e t a t e  and Hp b u t  grows poorly. 
The second organism, the H organism, reduces C o p  t o  CHI, w i t h  Hp and appears t o  "pul l"  
the oxidat ion of e thanol  to a c e t a t e  by the oxidat ion of Hp a s  growth is g r e a t e r  i n  
the  mixture than i n  pure c u l t u r e  (26). Chloropseudomonas e t h y l i c a  has  been demon- 
s t r a t e d  to be a mixed c u l t u r e  which photosynthet ical ly  oxidizes  e thanol  t o  a c e t a t e  
( 7 ) .  
a c e t a t e  with t h e  reduction o f  SO;' to S-' as shown i n  Eq. 1. 

The cu l ture  cons is t s  of a sulfate-reducing bacterium which oxid izes  e thanol  to 

2CHgCHpOH + SOc2 -Z 2CH3COOH + S-' + 2H20 1) 

and a green s u l f u r  bacterium which photosynthet ical ly  oxidizes  S-' to SO;' as shown 
i n  Eq. 2 .  

2COp + S-' + 2H20 hv, SO;' + 2CH20 2) 

The poss ib le  involvement of i n t e r c e l l u l a r  Hp t r a n s f e r  i n  this r e l a t i o n s h i p  has not  
y e t  been resolved. A t h i r d  example involves an obl igatory r e l a t i o n s h i p  between a 
sulfate-reducing bacterium and a methanogenic bacterium. S u l f a t e  (or fumarate) i s  
obl iga tory  f o r  the growth o f  species  of  Desulfovibrio on l a c t a t e  as shown i n  Eq. 3. 

2 l a c t a t e  + SO,' + S2 + 2 a c e t a t e  + 2C02 + 2Hp0 + 2H-' 3)  

Recently, it has been demonstrated that the sulfate-reducing b a c t e r i a  can oxid ize  
l a c t a t e  t o  e thanol  when grown i n  the presence of methanogenic b a c t e r i a  and the  elec-  
t r o n s  (as Hp) u t i l i z e d  f o r  the reduction of CO2 to CHI, rather than the reduct ion of 
SO,' to S-' (2). This re la t ionship  involving i n t e r c e l l u l a r  Hp t r a n s f e r  is  shown i n  
Eqs. 4, 5 and 6. 

Sulfa te  reducing bacterium 

2CH3CHzOHCOOH + 2H20 -F 2CH3COOH + 2032 + 4Hz + 2H+ 4) 

Methanogenic bacterium 

4Hz + COa -Z CHI, + 2Hp0 

Sum: - 
2CH3CHpOHCOOH -f 2CH)COOH + C02 + CHI, + 2H + 

5 )  

6) 

I n  essence,  C O p  is  funct ioning a s  e lec t ron  acceptor  f o r  the fermentation of l a c t a t e  
(and probably o ther  e lec t ron  donors) and Hp is  t ransfer red  between these two anaerobic 
b u t  physiological ly  d i f f e r e n t  types of b a c t e r i a .  The mechanism o f  t h i s  r e l a t i o n s h i p  
has been postulated to  be the  "pul l ing" of l a c t a t e  oxidat ion by the u t i l i z a t i o n  of Hp 
f o r  CH+ formation. This concept is  a l s o  supported by the observat ion that hydrogen- 
ase is  concentrated around the  outs ide of t h e  sulfate-reducing b a c t e r i a .  Thus, 
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methane formation is  opera t ing  as an  "e lec t ron  sink" o r  terminal oxidase and could 
conceivably be "pulling" t h e  complex s e r i e s  of fermentative reac t ions  occurr ing  i n  
the  ce l lu lose  breakdown. 

The observations o f f e r  a new t h e o r e t i c a l  bas i s  f o r  the in t e rp re t a t ion  of a por- 
t i on  o f  the microbiology and biochemistry i n  anaerobic sediments o f  f resh  and marine 
waters. I n t e r c e l l u l a r  Hp t r a n s f e r  appears to be a s p e c i f i c  adaptation of anaerobic 
bac te r i a  which allows them to g rea t ly  extend t h e i r  growth po ten t i a l .  Thus, the  num- 
be r  of physiological types  of microorganisms involved i n  the transformation of organic 
ma te r i a l s  may be f a r  fewer than previously an t i c ipa t ed .  The ideas also suggest t h a t  
a s p e c i f i c  environment may have unexpected p o t e n t i a l  f o r  microbial  a c t i v i t i e s  such as  
s u l f a t e  reduction, hydrogen u t i l i z a t i o n  o r  n i t r a t e  reduction. I t  has a l s o  recent ly  
been e s t ab l i shed  t h a t  anaerobic sediments a r e  s t ab le  enough so t h a t  c l a s s i c a l  bio- 
chemical and phys io logica l  experiments can be  performed with sediments by t r e a t i n g  
them as b a c t e r i a l  cu l tu re s  (5 ) .  Inves t iga t ions  u t i l i z i n g  these  two concepts should 
lead  t o  a much g r e a t e r  understanding of t he  reac t ions  occurring i n  organic deposits 
and ind ica t e  the ways i n  which these complex fermentations can b e  appl ied  to  spec i f i c  
problems of economic concern. 
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EZectron donors s042-  Photosyn*)(s2)f N z ~  H 2 0  :!: H2 
and 
r e s p i r a t o r y  b iosynthe t ic  
sulfur 
oxidat ion reduction 

Light ,  0 2  
NOg- I + 

Amino ac ids ,  
co-factors ,  etc. 

Fig. 1. A simple representa t ion  of  the b i o l o g i c a l  

'' TPN, Hz0 
s u l f u r  cycle .  


